Unravelling the role of SNM1 in the DNA repair system of Trypanosoma brucei.

نویسندگان

  • James A Sullivan
  • Jie Lun Tong
  • Martin Wong
  • Ambika Kumar
  • Hajrah Sarkar
  • Sarah Ali
  • Ikran Hussein
  • Iqra Zaman
  • Emma Louise Meredith
  • Nuala A Helsby
  • Longqin Hu
  • Shane R Wilkinson
چکیده

All living cells are subject to agents that promote DNA damage. A particularly lethal lesion are interstrand cross-links (ICL), a property exploited by several anti-cancer chemotherapies. In yeast and humans, an enzyme that plays a key role in repairing such damage are the PSO2/SNM1 nucleases. Here, we report that Trypanosoma brucei, the causative agent of African trypanosomiasis, possesses a bona fide member of this family (called TbSNM1) with expression of the parasite enzyme able to suppress the sensitivity yeast pso2Δ mutants display towards mechlorethamine, an ICL-inducing compound. By disrupting the Tbsnm1 gene, we demonstrate that TbSNM1 activity is non-essential to the medically relevant T. brucei life cycle stage. However, trypanosomes lacking this enzyme are more susceptible to bi- and tri-functional DNA alkylating agents with this phenotype readily complemented by ectopic expression of Tbsnm1. Genetically modified variants of the null mutant line were subsequently used to establish the anti-parasitic mechanism of action of nitrobenzylphosphoramide mustard and aziridinyl nitrobenzamide prodrugs, compounds previously shown to possess potent trypanocidal properties while exhibiting limited toxicity to mammalian cells. This established that these agents, following activation by a parasite specific type I nitroreductase, produce metabolites that promote formation of ICLs leading to inhibition of trypanosomal growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficacy of repeated doses of diminazene aceturate (Dinazene®) in the treatment of experimental Trypanosoma brucei infection of Albino rats

The efficacy of repeated doses of Dinazene® in Albino rats experimentally infected with Trypanosoma brucei (Gboko strain) was investigated. A total of 30 adult female Albino rats weighing 130-190 g were used for the study. They were assigned to six groups (groups A-F) of five rats each. Groups A-D were infected intraperitoneally with 1.0 × 106 trypanosomes in 400 μL of PBS diluted blood while g...

متن کامل

Overview of DNA Repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major

A wide variety of DNA lesions arise due to environmental agents, normal cellular metabolism, or intrinsic weaknesses in the chemical bonds of DNA. Diverse cellular mechanisms have evolved to maintain genome stability, including mechanisms to repair damaged DNA, to avoid the incorporation of modified nucleotides, and to tolerate lesions (translesion synthesis). Studies of the mechanisms related ...

متن کامل

Expression of the human DNA glycosylase hSMUG1 in Trypanosoma brucei causes DNA damage and interferes with J biosynthesis.

In kinetoplastid flagellates such as Trypanosoma brucei, a small percentage of the thymine residues in the nuclear DNA is replaced by the modified base beta-D-glucosyl-hydroxymethyluracil (J), mostly in repetitive sequences like the telomeric GGGTTA repeats. In addition, traces of 5-hydroxymethyluracil (HOMeUra) are present. Previous work has suggested that J is synthesised in two steps via HOM...

متن کامل

Distinct roles for two RAD51-related genes in Trypanosoma brucei antigenic variation

In Trypanosoma brucei, DNA recombination is crucial in antigenic variation, a strategy for evading the mammalian host immune system found in a wide variety of pathogens. T.brucei has the capacity to encode >1000 antigenically distinct variant surface glycoproteins (VSGs). By ensuring that only one VSG is expressed on the cell surface at one time, and by periodically switching the VSG gene that ...

متن کامل

Genome-wide and protein kinase-focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei

All cells are subject to structural damage that must be addressed for continued growth. A wide range of damage affects the genome, meaning multiple pathways have evolved to repair or bypass the resulting DNA lesions. Though many repair pathways are conserved, their presence or function can reflect the life style of individual organisms. To identify genome maintenance pathways in a divergent euk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 96 4  شماره 

صفحات  -

تاریخ انتشار 2015